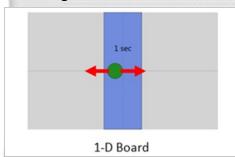
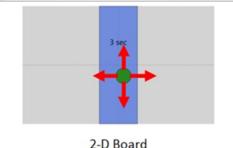


Relative efficacy of various strategies for visual feedback in standing balance activities Michael W. Kennedy^a, Charles R. Crowell^b, Aaron Striegel^c, Michael Villano^b, James P. Schmiedeler^a

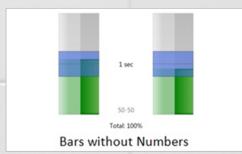



Background

- · Visual feedback (VFB) is a common form of biofeedback known to improve the efficacy of balance therapy and training.
- Mechanisms of biofeedback influence on rehabilitation are not yet fully understood.
- The objective is to identify the optimal form of VFB for balance therapy and training.

Methods

• 4 VFB strategies for lateral balance activities


Direct Center of Pressure (CoP) - lateral only

Direct CoP - lateral and sagittal

Methods, cont.

Lateral weight distribution - with numbers

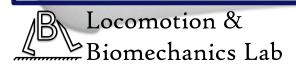
Lateral weight distribution – without numbers

Data collection

- 79 healthy subjects (ages 17-21; 39 M and 40 F)
- Data collected using WeHab system¹ (40 min avg.)
- 3 repetitions of static, symmetric stance task
- 2 repetitions of dynamic weight-shifting task

Data analysis

- Static task
- o Center of Pressure (CoP) data: muscular dynamics
- o Center of Gravity (CoG) data: balance kinematics
- o Difference (CoP-CoG): postural control
- Dynamic task: Time to target


Results

- Static balance
- Board feedback reduces sway compared to Bars for muscular dynamics (p=0.0002), balance kinematics (p=0.0001), and postural control (p=0.001).
- Numbers feedback reduces sway for muscular dynamics (p=0.0385) and postural control (p=0.0105).
- Dimensionality has no significant effect on sway.
- Dynamic weight-shifting balance
- Board feedback results in faster weight shifts compared to Bars feedback (p<0.0001).
- Numeric feedback has no significant effect on dynamic weight shifting.
- For offset targets, 2-D feedback results in faster weight shifts (p=0.0411).

Conclusions & Future Work

- Potential clinical applications
 - Initial balance therapy (maximal assistance)
 - o Static: Board
 - Weight shifting: 2-D Board
 - Advanced balance therapy (reduced assistance)
 - Static: Bars without numbers
 - Weight shifting: Bars
- Optimization of VFB for clinical population
 - Evaluate feedback arrangement (Board vs. Bars)
 - Assess effects of variation in balance deficits on optimal feedback strategy

. Kennedy, et al. (2011) Enhanced feedback in balance rehabilitation using the Nintendo Wii Balance Board, HealthCom 2011,

^aDepartment of Aerospace and Mechanical Engineering, University of Notre Dame ^bDepartment of Psychology, University of Notre Dame ^cDepartment of Computer Science & Engineering, University of Notre Dame

