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Abstract

.

Goal:
• Transform observational behavior analysis
• Through computational framework
• Modeling of emotionally-rich human interactions
• Signal processing and machine learning
• Existing family therapy data
• Alleviate the tedium of manual annotation
• Offer new analysis capabilities and empower the mental health experts

Significance: USA-10mil people receive psychotherapy every year and state of the art hasn’t changed for decades
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Approaches

.

+ This poster: [- Other two posters]
- Model interlocutors independently
+ Model dynamics of interlocutors:

×Acoustic and visual modalities
- Incorporate Saliency
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Data

.

Couple Therapy Corpus
• 117 real distressed couples
• 10-minute dyadic interactions
• 596 sessions (96 hours)
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Data used

.

Audio/Lexical and Visual subsets used
• Use top/bottom 20% for audio, lexical and 25% for video
• Choose subsets with acceptable audio/video qualities
• Used 6 codes with highest human agreement
• Some distributions skewed and not very separable
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Entrainment

.

Behavioral Entrainment (a.k.a., interaction synchrony,
accommodation, mirroring, etc.)

• Naturally-spontaneous coordination between interacting
dyads’ behaviors at multiple levels across multiple
communicative channels

• Theoretical Implications
– Achieving communication efficiency, rapport
– Communicating interest and involvement in the

interaction
– Increasing mutual understanding
– Affective mechanism, e.g., emotion contagion,

empathy, etc.
– Children’s development and learning
– Many more …

Highly-qualitative; a felt-sense of “in-sync”
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Vocal: Features/LLD’s

.

Q: Does pca channel capture behavior?
• (Explicit speaking): Pitch, Energy, Speech-rate.
• (Implicit speaking): MFCC &Statistical functionals

Representative vocal Parameters (35)Representative vocal Parameters (35)
Pitch (5)
Intensity (3)
Speech Rate (1)
MFCC (26)

[α1, α2, α3,μf0,σf0]
[β1, μint, σint]
[sylb]
[μMFCC(i), σMFCC(i)], i=1,…,13
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Vocal: Unsupervised Computational Framework

.

• Intuitively, “how do two people sound alike as they interact in a conversation?”
• Similarity between two vocal characteristics spaces
• Directional & Symmetric Similarity Measures
• Kullback-Leibler Divergence (KLD) on normalized variance vector or (weighted) angles between PCA directions
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Vocal Entrainment

.

Quantify vocal entrainment through signal processing

Challenges/Motivation

• Human annotation difficult
• Turn-taking structure of human conversation
• Variable length of speech
• Rich information encoded in vocal features
• Multiple informative vocal features for entrainment
• Entrainment process inherently is directional

.

Vocal Entrainment: Validation

.

Hypothesis 1: Verification: verifying the proposed signal-
derived measures capture psychologically-valid notions of
entrainment

• Compare real couple interactions with
• Artificially sequenced interactions
• Vocal entrainment on real couples higher ✓

Artificially sequenced interaction

Random

?

Hypothesis 2: Analysis: analyzing the relationship of the vocal
entrainment phenomenon and spouses’ affective states

• Compare positive interactions with negative interactions
• Vocal entrainment on positive couples higher ✓

Hypothesis 3: Application: applying vocal entrainment
measures as features in a affective state recognition task

• Entrainment correlated with affective behaviors
• Model temporal dynamics of entrainment
• Dataset: Same as Acoustic and Lexical
• Statistical Framework Factorial Hidden Markov Model
• 62.8% accuracy ✓
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Visual: Head Motion Similarity Measure

.

• Based on two bags of events and GMM posteriors
• Compute pair-wise KL divergence of events
• Average of small divergence

– Similar events are salient
– Variation of other events no effect

Dynamic change of similarity

First half of 
interaction

Second half 
of interaction

Time axis

Subject A Subject B

Similarity

Similarity

Hypotheses Tests
• Similarity increases along time

– log-average ratio of similarity on 50-GMM
– Binomial test against 50% chance

• Relative change of similarity correlated with affect
– Using the same log-average ratio
– Student’s t-test of correlation

parameter ρ value
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• ρ — percentile of small KLD pairs
• p ≤ 0.01 for result of 61%
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p = 0.05

p = 0.01

• Significant correlation with behavior codes
• Increasing similarity related to positive affect
• Do not generally happen in random coupling


