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Abstract

.

Goal:
• Transform observational behavior analysis
• Through computational framework
• Modeling of emotionally-rich human interactions
• Signal processing and machine learning
• Existing family therapy data
• Alleviate the tedium of manual annotation
• Offer new analysis capabilities and empower the mental health experts

Significance: USA-10mil people receive psychotherapy every year and state of the art hasn’t changed for decades
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+ This poster: [- Other two posters]
+ Model interlocutors independently:

×Lexical, acoustic and visual modalities
- Model dynamics of interlocutors
- Incorporate Saliency
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Data
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Couple Therapy Corpus
• 117 real distressed couples
• 10-minute dyadic interactions
• 596 sessions (96 hours)

Human Evalution

Subjective 
Judgments
(e.g., is husband 

withdrawing?)

Sensing
(e.g., audio, video)

Recognition 
(e.g., transcription, speaker ID)

Interpretation
(e.g., uncertainty, blame)

Diagnosis and 
Treatment

Human Behavior or Interaction of interest
(e.g., couple interacting)

Informs

Informs

Informs

Multimodal acquisition 
(e.g. Audio, Video, Physiological)

Direct Observation

Data Coding

Feedback

Behavioral
Informatics

.

Data used

.

Audio/Lexical and Visual subsets used
• Use top/bottom 20% for audio, lexical and 25% for video
• Choose subsets with acceptable audio/video qualities
• Used 6 codes with highest human agreement
• Some distributions skewed and not very separable
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Acoustic Classification

.

Q: Does acoustic channel capture behavior?
• Frame-level low-level descriptors (LLDs)

– Prosodic: speech/non-speech, rate, f0, intensity
– Spectral: 15 MFCCs, 8 MFBs
– Voice quality: jitter, shimmer

• Separate features for (wife, husband, all)
• 7 temporal granularities

– Global: entire session
– Halves: 2nd half – 1st half
– Hierarchical: 0.1s, 0.5s, 1s, 5s, 10s windows

• 14 static functionals (e.g., mean, std. dev.)

Results with logistic regression (L2-regularized)

Importance of different features

.

Fusion

.

Modalities provide
complementary
information:

~ +2%

.

Future Work Highlights

.

• Introduce “latent layer” of behavioral primitives
• Improve on individual modalities. e.g. optimize ASR
• Implement fusion based on modality saliencies.
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Lexical

.

Q: Does lexical channel capture behavior?
• Test from reference text
• Test from (unoptimized) ASR output

Example Transcript
PartnerPartner Transcript
H
W
H
W
H
W
H
W
H
W
H
W
H
W
H
W
H
W

WHAT DID I TELL YOU YOU CAN DO THAT AH AND EVERYTHINGWHAT DID I TELL YOU YOU CAN DO THAT AH AND EVERYTHING
BUT WHY DID YOU ASK THEN WHY DID TO ASKBUT WHY DID YOU ASK THEN WHY DID TO ASK
AND DO IT MORE AND GET US INTO TROUBLEAND DO IT MORE AND GET US INTO TROUBLE
YEAH WHY DID YOU ASK SEE MY QUESTION ISYEAH WHY DID YOU ASK SEE MY QUESTION IS
MM HMMMMM HMMM
IF IF YOU TOLD ME THIS AND I AGREE I WOULD KEEP TRACK OF IT AND EVERYTHINGIF IF YOU TOLD ME THIS AND I AGREE I WOULD KEEP TRACK OF IT AND EVERYTHING
THAT’S THAT’STHAT’S THAT’S
THAT’S AGGRAVATING VERY AGGRAVATINGTHAT’S AGGRAVATING VERY AGGRAVATING
A BAD HABIT THATA BAD HABIT THAT
VERY AGGRAVATINGVERY AGGRAVATING
CAUSES YOU TO THINK THAT I DON’T TRUST YOUCAUSES YOU TO THINK THAT I DON’T TRUST YOU
THAT’S EXACTLY WHY THAT’S ABSOLUTELY THE WAY IT ISTHAT’S EXACTLY WHY THAT’S ABSOLUTELY THE WAY IT IS
AND IF I DON’T THE REASON FOR THAT IS AHAND IF I DON’T THE REASON FOR THAT IS AH
I DON’T CARE THE REASON YOU GET IT I GET IT TOOI DON’T CARE THE REASON YOU GET IT I GET IT TOO
THE REASON IS THE LONG TERM BAD PERFORMANCETHE REASON IS THE LONG TERM BAD PERFORMANCE
YEAH AND YOU KNOW WHYYEAH AND YOU KNOW WHY
MM HMMMMM HMMM
ALL YOU GET IS A NEGATIVE REACTION FROM MEALL YOU GET IS A NEGATIVE REACTION FROM ME

• Train ngram-models (here n=1) in ML manner
• Smooth with UBM
• Score transcripts to classify

Oracle classification results
Results on reference transcript (% correct)

code vs λ
Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)Results on reference transcript (% correct)

0.01 0.05 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.95 0.99
acceptance
blame
humor
negative
positive
sadness

91.4 91.0 91.0 90.0 90.3 89.2 88.5 87.5 86.4 75.3 60.5

91.0 91.4 91.8 91.0 90.3 89.2 89.2 88.5 88.2 78.1 63.4

71.3 72.4 72.0 71.3 69.5 69.9 67.5 67.0 65.2 61.6 57.3

83.8 84.9 86.7 86.7 86.4 85.7 86.0 86.0 85.3 74.9 60.2

89.6 89.6 89.6 88.9 87.5 87.8 87.8 87.5 87.8 76.7 63.8

59.0 61.6 60.9 61.3 60.6 60.2 58.8 59.5 59.1 57.7 58.5

• In real-world no transcripts, transcription error high so:
Decode and classification
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Latice classification results
Results through ASR lattices (% correct)

code vs λ
Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)Results through ASR lattices (% correct)

0.01 0.05 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.95 0.99
acceptance
blame
humor
negative
positive
sadness

71.4 72.9 75.4 73.6 73.6 73.2 71.8 71.1 68.9 64.6 63.6

75.0 76.8 77.9 78.6 78.2 77.9 76.8 76.4 73.9 67.5 63.9

57.9 58.6 58.6 57.5 57.1 56.4 57.9 56.1 55.4 55.0 50.7

64.3 66.1 69.6 71.1 70.4 69.3 69.3 67.9 65.7 60.7 58.9

72.9 73.2 74.6 74.6 72.5 72.9 73.9 73.6 71.4 66.1 64.6

52.5 55.0 55.7 52.1 50.4 50.7 51.1 51.8 52.1 54.3 52.1

• Can inform experts:
Most blaming wordsMost blaming wordsMost blaming wordsMost blaming words Least blaming wordsLeast blaming wordsLeast blaming wordsLeast blaming words

in terms of discriminative contributionin terms of discriminative contributionin terms of discriminative contributionin terms of discriminative contribution in terms of discriminative contributionin terms of discriminative contributionin terms of discriminative contributionin terms of discriminative contribution

Word
No Bl. Blame Δ

Word
No Bl. Blame Δ

Word
log problog problog prob

Word
log problog problog prob

YOU -95.49 -85.88 -9.61 EXPECTS -16.70 -17.84 1.14
YOUR -51.24 -47.18 -4.06 CONSIDERATION -16.11 -17.31 1.21

ME -40.27 -37.74 -2.53 KNOW -35.10 -36.62 1.53
TELL -33.97 -32.46 -1.51 INABILITY -16.76 -18.32 1.55

ACCEPT -25.44 -23.99 -1.45 SESSION -20.51 -22.07 1.56
CARING -27.05 -25.91 -1.14 OF -44.50 -46.26 1.76

KITCHEN -21.22 -20.21 -1.02 ANTICIPATION -22.22 -24.21 2.00
TOLD -29.04 -28.19 -0.85 THINK -35.70 -37.77 2.07
NOT -40.32 -39.59 -0.73 WE -29.39 -31.75 2.36

WHAT -51.47 -50.77 -0.69 I -99.92 -102.49 2.57
INTIMACY -43.16 -42.53 -0.63 THAT -91.30 -93.97 2.67

IT -42.70 -42.18 -0.52 UM -64.75 -70.76 6.01

.

Visual: Head Motion

.

Q: Does head motion capture behavior?
• Continuous, inter- and intra- person variation
• Lacking common list of kinemes
• Implicit link with affect and attitude
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