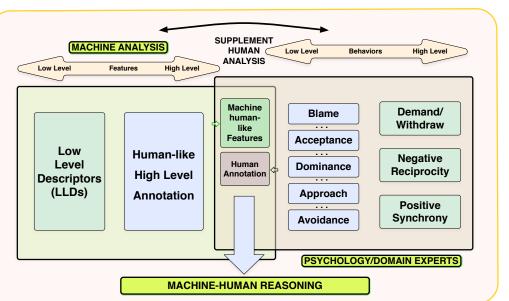


Quantitative Observational Practice in Family Studies (3 of 3)

Panayiotis (Panos) Georgiou, Shri Narayanan, Gayla Margolin, Brian Baucom, Matt Black, James Gibson, Nassos Katsamanis, Jeremy Lee, & Bo Xiao Signal Analysis and Interpretation Laboratory (SAIL), Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 georgiou@sipi.usc.edu

Goal:

- Transform observational behavior analysis
- Through computational framework
- Modeling of emotionally-rich human interactions
- Signal processing and machine learning
- Existing family therapy data
- Alleviate the tedium of manual annotation
- Offer new analysis capabilities and empower the mental health experts


Significance: USA-10mil people receive psychotherapy every year and state of the art hasn't changed for decades

Abstract

Identify Salient Events Express Perceive Recognize Machine Processing

Approaches

- + This poster: [- Other two posters]
 - Model interlocutors independently
 - Model dynamics of interlocutors
 - + Incorporate Saliency:
 - ×Lexical, acoustic and visual modalities

Data

Couple Therapy Corpus

Human Evalution

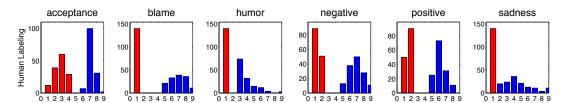
Diagnosis and Treatment

- 117 real distressed couples
- 10-minute dyadic interactions

• 596 sessions (96 hours)

(e.g., couple interacting)

Data used


Audio/Lexical and Visual subsets used

• Use top/bottom 20% for audio, lexical and 25% for video

Interpretation

Behavioral Informatics

- Choose subsets with acceptable audio/video qualities
- Used 6 codes with highest human agreement
- Some distributions skewed and not very separable

Saliency

- · Couples' problem solving discussion are rated on a session level
- It is of interest to identify shorter-term events that
- These "salient" instances may help to inform both behavioral scientists
- We use multiple instance learning (MIL) to focus on local events in the couples' therapy sessions

What are the important bits?

Audio Feature Extraction fo mfcc vad Mean Median std max min range

- influence evaluators' perceptions of the interaction

Visual Feature Extraction

120.5

Identify *saliency* through Multiple Instance Learning

Husband:

"feeling"

120

to the session

• We consider each session a "bag" of "instances"

Instances are varying-length speaker turns or equal-length windows

· Each instance conveys particular behaviors of interest with varying degrees

121

"but i don't think you should feel like that"

121.5

122

Time (s)

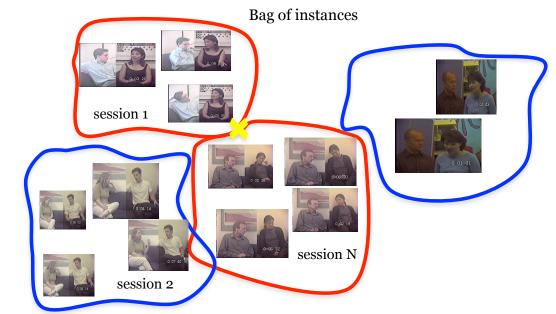
Lexical Feature Extraction

Behavior	Informative words					
acceptance	ce UM, TOLD, NOTHING, MM, YES, EVERYTHING, A					
	MORE, (LAUGH), CAN'T					
blame	NOTHING, EVERYTHING, YOUR, NO, SAID, ALWAYS					
	CAN'T, NEVER, MM, TOLD					
humor	(LAUGH), TOPIC, GOOD, MISSING, COOL, TREAT					
	SEEMED, TRULY, ACCEPT, CASE					
negative	TOLD, KIND, MM, MAYBE, NOTHING, UM, YOUR					
	NEVER, CAN'T, (LAUGH)					
positive	UM, KIND, NOTHING, MM, GOOD, (LAUGH), TOLD					
	CAN'T, MEAN, WHY					
sadness	ACTUALLY, ONCE, WEEK, GO, OKAY, STAND, CON-					
	STANTLY, UP, ALREADY, WENT					

123 123.5 124 124.5

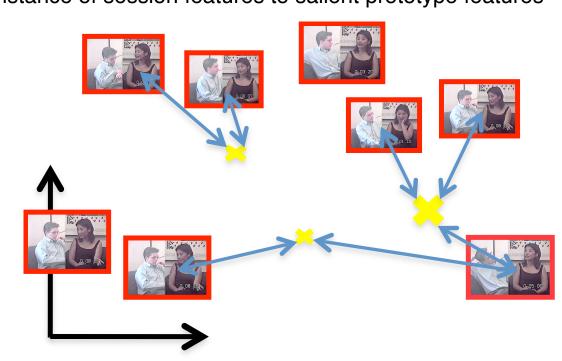
"i would really really"

Multiple Instance Learning: Instances

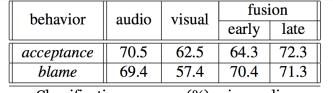

• MIL is a method for identifying the "salient instances", i.e., the local events that most greatly affect the final rating assigned

Wife: "but i do"

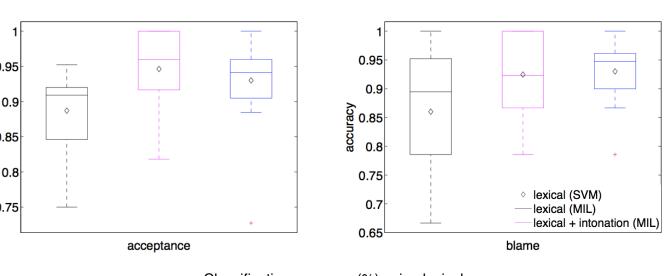
Wife: "so"


122.5

Husband: <laugh>


Multiple Instance Learning

Distance of session features to salient prototype features



Behavioral classification through MIL

Configuration	Wife		Husband		M	
	DD-SVM	SVM	DD-SVM	SVM	Ш	1
acceptance	73.6	72.1	69.3	69.3	Ш	1 1
blame	77.1	79.3	72.3	71.4	Ш	0.95
positive	74.3	70.0	55.0	58.6	Ш	0.00
negative	75.0	77.9	71.4	70.0	Ш	_ 0.9
sadness	66.4	57.1	63.6	62.9	Ш	ac)
humor	52.9	51.4	63.6	63.6	Ш	0.85
Classification accuracy (%) using audio						
with utterance level instances						

Classification accuracy (%) using audio, visual, and audio-visual fusion with overlapping two second instances

Classification accuracy (%) using lexical, intonation, and lexical-intonation fusion features

Summary and Future work

- Explored saliency in MIL framework
- Explored saliency in multiple modalities
- Explored low-level instance features and deriving highlevel session features
- Temporal dynamics of salient events for *reactivity*
- Explore alternative measures for saliency, such as knowledge inspired signal cues (e.g., laughter, crying)

Citations, Acknowledgments

Full list of publications at http://sail.usc.edu Work funded by NSF SHB program

