Enabling Technologies for Assessing and Assisting Independent Living

Huaping Liu and Patrick Chiang, Oregon State Univiversity Kathy Wild, Oregon Health and Science University

Project Goal: Track and detect

- Medication taking
- Falls and other key activities
- **Technology:** Indoor position that is
- accurate
- non-intrusive
- multi-persons capable, and
- real-time

Technology Choices

- Video: very "intrusive"
- Indoor location technologies

Technology	Advantages	Disadvantages					
Optical	Very accurateExcellent for ranging with line-of-sight (LOS)	• Not suitable for tracking multiple people indoors					
Acoustic	Could cover a large area	• Not suitable for indoors					
Relative motion (e.g., accelerometer)	SimpleSmall form factor	• Error accumulates (inaccurate over time)					
Radio frequency (RF)							
Angle of arrival (AOA) (bearing)	Generally simpleSignaling bandwidth is not a concern	InaccurateNot suitable for multiple users					
Received signal strength (RSS)	 No synchronization of any kind is needed Signaling bandwidth is not a concern Very simple to deploy 	 Accuracy is generally poor Requires site-specific path loss survey Not robust in changing environments 					
Time of arrival (TOA)	 Much higher accuracy than RSS & AOA systems if a large bandwidth is available Easy to support multiple users 	 Requires synchronization of transmitter and all receivers Multipath might affect accuracy 					
Time difference of arrival (TDOA)	 Much higher accuracy than RSS & AOA systems if a large bandwidth is available Easy to support multiple users 	Requires synchronized receiversMultipath might affect accuracy					

Prototypes 1 and 2 – Technology

Pulsed Ultrawideband

• Operates in 3.1-4.6 GHz

- TDOA for 3-dimensional (3D) position
 Minimum of 4 receivers
 - Multipath reduction
 - Wire-connected or Wirelessly synchronized receivers

Prototype 1 – System

- Wire-connected receivers
- System functional blocks

Acquired data with timedifference information

• Laser measured receiver and target locations as reference

Prototype 1 – Measurement Results

- Experiments in a large vacant building
- Coverage area: ~25 x 20 x 4 m³
- Grid of target locations

• Results:

	x-coordinate	y-coordinate	z-coordinate
Ave. error (cm)	1.697134	1.080181	8.650963
Error std (cm)	1.231737	0.904521	6.149895

Prototype 2 – System

- Wirelessly synchronized receivers
- System functional blocks

- System synchronizes on an UWB signal (····▶) and transmits data to the PC (→)
- After synchronization, localization signals are acquired (→) and sent to the PC (···>)
- 3. PC calculates fine synchronization and the location

Prototype 2 – Hardware

Algorithms and control of the whole system

Receiver (Rx) prototype: all Rx's operate independently, all data exchange via a wireless channel

Prototype 2 – Measurement Results

- Experiments in a lab
- Coverage area: ~5 x 5 x 3 m³
- Four receivers per network with 1 synchronization node

Results

Timing synchronization precision: ~80 picoseconds

Location accuracy: 2-3 cm

Prototype 3 – Technology

TDOA position without synchronization

- Can operate in WiFi or UWB frequencies
- TDOA with clustered receivers for 3D position
 ➢ Minimum of 2 clusters per area needed
 ➢ Clusters operate independently

Prototype 3 – System

Prototype 3 – Hardware

Data-acquisition unit

- Four simultaneous channels, each running at 3 Gsps
- Real-time operation
- Data transfer via Ethernet or WiFi

Prototype 3 – Measurement Results

• With WiFi at 3 typical locations:

	x (m)	y (m)	z (m)								
Radio measured	3.5462	3.81	1.524		3.5462	4.88	1.524		4.69	4.53	1.524
Laser measured	3.3312	3.904	1.2853		3.3898	4.9947	2.4855		4.9283	4.7864	1.9136
Error (m)	0.215	-0.094	0.2387	Error (m)	0.1564	-0.1147	-0.9615	Error (m)	-0.2383	-0.2564	-0.3896

With pulsed UWB transmitter (battery-powered, watch-sized): ~5 cm